The formation mechanism of S_2 state in photosystem II

نویسندگان
چکیده

منابع مشابه

Radical pair state in photosystem II.

A stable light-induced EPR signal is reported in photosystem II particles and in chloroplasts at 5 K. Characteristic spectral features indicate that the signal arises from dipole-dipole interactions of a radical pair triplet state. From its dependence on potential, its relationship to the spin-polarized triplet state, and the redox state of the pheophytin acceptor (Ph) and because it is present...

متن کامل

Rapid formation of the stable tyrosyl radical in photosystem II.

Two symmetrically positioned redox active tyrosine residues are present in the photosystem II (PSII) reaction center. One of them, TyrZ, is oxidized in the ns-micros time scale by P680+ and reduced rapidly (micros to ms) by electrons from the Mn complex. The other one, TyrD, is stable in its oxidized form and seems to play no direct role in enzyme function. Here, we have studied electron donati...

متن کامل

formation and evolution of regional organizations: the case study of the economic cooperation organization (eco)

abstract because of the many geopolitical, geo economical and geo strategically potentials and communicational capabilities of eco region, members can expand the convergence and the integration in base of this organization that have important impact on members development and expanding peace in international and regional level. based on quality analyzing of library findings and experts interv...

15 صفحه اول

Nucleophilic water attack is not a possible mechanism for O-O bond formation in photosystem II.

Two different types of mechanisms are at present suggested for the O-O bond-formation step in photosystem II. The first one is a coupling between an oxyl radical and a bridging oxo. The second one is a nucleophilic water attack on a terminal oxo (or oxyl) group. In the present short paper, the six most reasonable versions of the latter mechanism have been studied and compared with the oxo-oxyl ...

متن کامل

Mechanism of tyrosine D oxidation in Photosystem II.

Using quantum mechanics/molecular mechanics calculations and the 1.9-Å crystal structure of Photosystem II [Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473(7345):55-60], we investigated the H-bonding environment of the redox-active tyrosine D (TyrD) and obtained insights that help explain its slow redox kinetics and the stability of TyrD(•). The water molecule distal to TyrD, located ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Seibutsu Butsuri

سال: 2003

ISSN: 0582-4052,1347-4219

DOI: 10.2142/biophys.43.s203_2